Influence of acute inspiratory loading upon diaphragm motor-evoked potentials in healthy humans.

نویسندگان

  • Emma Z Ross
  • Alexander V Nowicky
  • Alison K McConnell
چکیده

Acute prior activity of the inspiratory muscles can enhance inspiratory muscle strength and reduce effort perception during subsequent inspiratory efforts. However, the mechanisms subserving these changes are poorly understood. Responses to magnetic stimulation in 10 subjects were studied after an acute bout of nonfatiguing inspiratory muscle loading (IML), corresponding to 40% of subjects' initial maximal inspiratory pressure (MIP), and after an acute bout of nonloaded, forced inspiration (NLF). Motor-evoked potentials elicited by cortical stimulation (MEP(c)) and by phrenic nerve stimulation (MEP(p)) were recorded transcutaneously from the diaphragm before, immediately after, and 15 min after two sets of 30 inspiratory efforts, at rest and during an MIP effort. After IML, MIP increased to 113 +/- 3% (SE) of baseline and diaphragm MEP(p) (during MIP) significantly increased (129 +/- 10% of baseline). Diaphragmatic MEP(c) (during MIP), expressed as a percentage of maximal MEP(p), decreased after IML (from 29 +/- 9% to 20 +/- 6%; P = 0.017) and after NLF (from 43 +/- 5% to 31 +/- 5%; P = 0.032). Observations from the biceps brachi demonstrated that changes after IML and NLF were specific to the inspiratory muscle, since no significant changes were observed in biceps force generation or in MEP(p) or MEP(c) amplitudes. These data indicate that after IML increased global inspiratory strength is accompanied by increased peripheral excitability and by a dampening of corticospinal excitability of the diaphragm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unaltered respiratory-related evoked potentials after acute diaphragm dysfunction in humans.

Respiratory muscles play an important role in the origin of respiratory sensations. Data dissecting the role of the diaphragm and other inspiratory muscles are scarce. This study aimed to determine the impact of diaphragm dysfunction following inspiratory resistive loading on respiratory-related evoked potentials considered as a neurophysiological substrate of certain types of respiratory sensa...

متن کامل

Reduced Phrenic Motoneuron Recruitment during Sustained Inspiratory Threshold Loading Compared to Single-Breath Loading: A Twitch Interpolation Study

In humans, inspiratory constraints engage cortical networks involving the supplementary motor area. Functional magnetic resonance imaging (fMRI) shows that the spread and intensity of the corresponding respiratory-related cortical activation dramatically decrease when a discrete load becomes sustained. This has been interpreted as reflecting motor cortical reorganization and automatisation, but...

متن کامل

Putative protective effect of inspiratory threshold loading against exercise-induced supraspinal diaphragm fatigue.

The present investigation was intended to assess the consequences of an inspiratory load on the diaphragm central component of fatigue during exercise. We recorded the motor potential evoked (MEP) by transcranial magnetic stimulation of the motor cortex in 10 subjects. The diaphragm and rectus femoris were studied before and 10, 20, and 40 min after two 16-min cycling exercise (E) trials requir...

متن کامل

Reliability of Motor Evoked Potentials Induced by Transcranial Magnetic Stimulation: The Effects of Initial Motor Evoked Potentials Removal

Introduction: Transcranial magnetic stimulation (TMS) is a useful tool for assessment of corticospinal excitability (CSE) changes in both healthy individuals and patients with brain disorders. The usefulness of TMS-elicited motor evoked potentials (MEPs) for the assessment of CSE in a clinical context depends on their intra-and inter-session reliability. This study aimed to evaluate if removal ...

متن کامل

Effect of voluntary facilitation on the diaphragmatic response to transcranial magnetic stimulation.

We assessed recruitment curves of the surface diaphragm motor-evoked potential (MEP) after transcranial magnetic stimulation during relaxation and at three different levels of facilitation (20, 40, and 60% of maximal inspiratory esophageal pressure) in 10 healthy subjects (six young and four elderly). MEP amplitude recruitment curves varied between individuals during relaxation and at each leve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 102 5  شماره 

صفحات  -

تاریخ انتشار 2007